Diafiltration of ultrafiltration retentate of whey from white brined cheese
Mariya Dushkova, Nikolay Menkov

University of Food Technologies, Plovdiv, Bulgaria, e-mail: maria_douchkova@yahoo.fr

ABSTRACT
Whey diafiltration was carried out with a UF25-PAN polyacrylnitrilic membrane with 25 kDa molecular weight cut-off at volume reduction factors (VRF) VRF=2, VRF=4, VRF=6, VRF=8, VRF=10. The values of the principal components dry matter, protein, lactose and mineral substances in the retentates and permeate obtained were established. The relative shares of protein, lactose and mineral substances in the dry matter, the concentration factor (CF) values for dry matter, protein, lactose and mineral substances, and the protein retention factor (RF) were determined. Linear models were created for the CF of each investigated component according to the VRF, and a logarithmic model was developed for the protein RF according to the VRF. The results obtained demonstrated the efficiency of diafiltration for deep treatment aimed at a further elimination of lactose and mineral substances and subsequent utilization of the diafiltration concentrates low in lactose and mineral substances as a liquid supplement in the manufacture of extruded cereal products.

Keywords: whey; diafiltration; ultrafiltration; white brined cheese

INTRODUCTION
White brined cheese is a semi-hard cheese made mainly in the Balkan countries. It is the most widely produced cheese in Bulgaria with specific technological and flavour characteristics due to its technology [4,9]. In recent years there has been a permanent increase in the quantity of white brined cheese and whey released during its production. It contains approximately 50 % of the dry matter and a significant part of the whey proteins in milk. This has prompted the need to search for solutions related to the utilization of the valuable whey components and to environmental efficiency regarding wastewater purity. A number of investigations [3,5,6,12,22] on the use of membrane methods in the dairy industry have aimed to show the possibilities of solving the above-mentioned problems. Ultrafiltration can be successfully applied to the production of whey protein concentrates [18,31,32].

Whey proteins are used in many branches of food industry because of their nutritive, biological and functional characteristics [8,10,13,19]. Therefore the possibilities of using them to enrich various products, such as baby foods, health foods and drinks, meat, bread products and extruded products, have been explored by various authors [14,23,25,28,29,30]. A number of investigations have aimed to determine the principal components of various whey types and the subsequent characteristics and content of the whey protein concentrates obtained [7,16,19,25,27]. Their rational use is impeded by the high levels of mineral substances and lactose which are sensitive to chemical reactions leading to changes in the organoleptic characteristics of the product [1,15,21,24].

The aim of the present work was to investigate the possibility for deep treatment of the ultrafiltration retentate of whey obtained during white brined cheese manufacture, and to establish the content of the main milk components in the resultant diafiltration retentates and permeate, the values of their relative shares in the dry matter, and the concentration and RF values with a view to their more effective application as liquid supplements in the manufacture of extruded cereal products.

MATERIALS & METHODS
The initial whey was obtained as a by-product in the production of white brined cheese from cow’s milk. The whey was afterwards separated with a separator, then pasteurized at 70-72°C for 15-20 s and subjected to ultrafiltration at an operating temperature of 50–55°C to VRF=10. Diafiltration of the ultrafiltration retentate obtained was carried out at the following volume reduction factors: VRF=2, VRF=4, VRF=6, VRF=8 and VRF=10. The VRF was calculated using the formula:

\[ VRF = \frac{V}{V_r} \]  

(1)
where \( V_O \) and \( V_R \) are the volumes of the diluted ultrafiltration retentate prior to diafiltration, and the diafiltration retentate respectively.

The membrane filtration experiments were carried out on laboratory equipment with a replaceable plate and frame membrane module fitted with a UF25-PAN polycrylnitrile ultrafiltration membrane with 25 kDa molecular weight cut-off shown in Fig.1. This equipment was supplied with a replaceable plate and frame membrane module with membrane surface area of 1250 cm\(^2\), a three-plunger high pressure pump (max 15 MPa) with capacity of 330 dm\(^3\)/h, a pipeline system with two manometers (0-15 MPa) for measuring the inlet and outlet pressure, and a special working pressure regulating valve.

![Figure 1. Scheme of laboratory equipment with a replaceable plate and frame membrane module: 1 – valve; 2 – manometer (0-5 MPa); 3 – valve; 4 – manometer (0-0.6 MPa); 5 – replaceable plate and frame membrane module; 6 – tank; 7 – pipeline; 8 – manometer (0-0.8 MPa); 9 – valve; 10 – manometer (0-15 MPa); 11 – pipeline; 12 – pump; 13 – valve; 14 – pipeline; 15 – pipeline; 16-tank](image)

In all experiments, samples of the ultrafiltration retentate obtained at VRF=10, of the diluted ultrafiltration retentate prior to diafiltration and of the retentate and permeate under diafiltration concentration from VRF=2 to VRF=10 were taken. They were analyzed according to the following indices: dry matter (ISO 6731: 1989); protein (ISO 8968-1: 2001); lactose (ISO 5765-1: 2002); mineral substances (ISO 936-1998). The presented values were obtained on the basis of three repetitions of the experiments.

In accordance with the results obtained, the CFs for dry matter, protein, lactose and mineral substance were calculated using the formula:

\[
\text{CF} = \frac{C_R}{C_O}, \tag{2}
\]

where \( C_R \) and \( C_O \) are the component concentrations in the diafiltration retentate and the diluted ultrafiltration retentate prior to diafiltration respectively. On the basis of the results obtained, the protein RF was calculated using the formula:

\[
\text{RF} = \left(1 - \frac{C_P}{C_R}\right) \times 100 \tag{3}
\]

where \( C_P \) and \( C_R \) are the protein concentrations in the diafiltration permeate and retentate respectively.

**RESULTS & DISCUSSION**

The principal components of the ultrafiltration retentate obtained at VRF=10, of the diluted ultrafiltration retentate prior to diafiltration and of the retentates and permeate obtained by diafiltration at different VRFs are presented in Fig.2 to Fig.5. Fig.2 shows a continuous protein increase from 0.45% through 0.76%, 1.38%, 1.39%, 1.99%, to 3.00% in the diluted ultrafiltration retentate and the diafiltration retentates at VRF=2, 4, 6, 8, 10 respectively. The protein content in the initial ultrafiltration retentate at VRF=10 (3.23 %) was close to those in the new diafiltration retentate at VRF=10 (3.00 %). The incorporation of these liquid diafiltration retentates in extruded cereal products would lead to an increase in their biological and nutritive value because of the higher amino-acid content \[11\]. The results in fig. 3 and 4 show a significant decrease in lactose and mineral substances in the new diafiltration retentate at VRF=10 compared to the initial ultrafiltration retentate at VRF=10: 0.3 % and 8.35 % for lactose, 0.2 % and 0.88 % for mineral substances respectively. Similar results for lactose and mineral substance reduction by diafiltration were obtained in \[8,17\]. The incorporation
of these liquid diafiltration retentates, which are low in lactose and mineral substances, in extruded cereal products would lead to a longer shelf-life and improved flavour of the extruded products. According to [21], the lower lactose and mineral substance content helped to avoid the unfavorable reactions and off-flavours during drying and storage of dried whey protein concentrates.

Figure 2. Protein content of ultrafiltration whey retentate at VRF=10, of diluted ultrafiltration retentate prior to diafiltration and of diafiltration retentates and permeate at VRF=2 to 10

Figure 3. Lactose content of ultrafiltration whey retentate at VRF=10, of diluted ultrafiltration retentate prior to diafiltration, and of diafiltration retentates and permeate at VRF=2 to 10

Figure 4. Mineral substance content of ultrafiltration whey retentate at VRF=10, of diluted ultrafiltration retentate prior to diafiltration, and of diafiltration retentates and permeate at VRF=2 to 10

The data shown in Figure 6 (the average values of the three experiments were used) provide useful information on the change in the principal components’ relative share as a percentage of dry matter at each degree of concentration investigated. It can be seen that the diafiltration of the ultrafiltration retentate at a VRF factor from 2 to 10 led to an increase in the relative share of protein from 22.84 % to 78.94 %. Relative
share of lactose and mineral substances in the dry matter decreased, from 65.48 % to 7.89 % and from 17.26 % to 5.26 % respectively, which demonstrates the diafiltration efficiency in increasing the protein content on the one hand, and reducing the lactose and mineral substance content significantly on the other hand. These data are in agreement with [32] and [19], which show that ultrafiltration/diafiltration can result in a protein increase >75%. Along with the study of the composition of the diafiltration retentates obtained, Fig. 7 shows the dry matter, protein, lactose and mineral substance CFs which are qualitative indicators of the process efficiency. The results demonstrate that at VRF=2 to VRF=10, the dry matter CF increased 1.1 to, 1.92 times respectively. Under the same operating conditions the protein CFs were from 1.69 to 6.67 respectively, the lactose CFs were from 0.71 to 0.23, and the mineral substance CFs were from 0.94 to 0.59. The results showed that protein was concentrated as many times as the VRF value.

![Dry matter content of ultrafiltration whey retentate at VRF=10, of diluted ultrafiltration retentate prior to diafiltration, and of diafiltration retentates and permeate at VRF=2 to 10](image)

**Figure 5.** Dry matter content of ultrafiltration whey retentate at VRF=10, of diluted ultrafiltration retentate prior to diafiltration, and of diafiltration retentates and permeate at VRF=2 to 10

![Relative share of the principal components of ultrafiltration retentate after dilution prior to diafiltration, and of retentates obtained by diafiltration at VRF=2 to 10](image)

**Figure 6.** Relative share of the principal components of ultrafiltration retentate after dilution prior to diafiltration, and of retentates obtained by diafiltration at VRF=2 to 10

It can also be seen that the lactose and mineral substance CFs decreased significantly when the VRF increased from 2 to 10, which demonstrates the diafiltration efficiency for lactose and mineral substance separation. The comparative results for the ultrafiltration and diafiltration retentates at VRF=10 showed higher values of protein CFs and significantly lower values of lactose and mineral substance CFs of the diafiltration retentates obtained compared to the ultrafiltration retentates at the same concentration degree. This is indicative of the possibility of applying diafiltration treatment to obtain retentates with low lactose and mineral substance content. The results related to the qualitative characteristic (selectivity) of the membrane used (Fig. 8) showed that the rise in the VRF from 2 to 10 was accompanied by an increase in the protein RF from 62.2 (VRF=2) to 93.2 (VRF=10). These results confirmed the suitability of the choice of a membrane with satisfactory selectivity. There are similar investigations [2] concerning protein retention for skim whey. They show that protein retention increases with the increase in VRF and pressure. After statistical processing, linear models for the CFs of each investigated component according to the volume reduction factor, and a logarithmic model for the protein RF according to the VRF were developed (Table 1).
CONCLUSION

Whey diafiltration was carried out with a UF25-PAN polyacrylnitrilic membrane with 25 kDa molecular weight cut-off at VRF =2 to VRF=10. The values of the principal components dry matter, protein, lactose and mineral substances in the retentates and permeate obtained were established. The relative shares of protein, lactose and mineral substances in the dry matter, the CF values for dry matter, protein, lactose and mineral substances, and the protein retention factor were determined. Linear models were created for the CF of each investigated component according to the VRF, and a logarithmic model was developed for the protein retention factor according to the VRF. The results obtained demonstrated the efficiency of diafiltration for deep treatment aimed at a further elimination of lactose and mineral substances and subsequent utilization of the diafiltration concentrates low in lactose and mineral substances as a liquid supplement in the manufacture of extruded cereal products.

REFERENCES